НОЧНОЙ ОСТРОВ. ФОРУМ ДЛЯ ПОДРОСТКОВ

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.



Солнечные электростанции

Сообщений 1 страница 5 из 5

1

Солнечная электростанция — инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию.
Солнечная энергия может быть превращена в электрическую двумя основными путями: термодинамическим и фотоэлектрическим.
При термодинамическом методе электрическую энергию за счет использования солнечной энергии можно получать с использованием традиционных схем в тепловых электроустановках, в которых теплота от сгорания топлива заменяется потоком концентрированного солнечного излучения.
http://s9.uploads.ru/t/7ESP3.jpg
Принципиальная блок-схема солнечной теплоэлектростанции

Существуют солнечные теплоэлектростанции трех типов:
• башенного типа с центральным приемником-парогенератором, на поверхности которого концентрируется солнечное излучение от плоских зеркал-гелиостатов;
• параболического (лоткового) типа, где в фокусе параболоцилиндрических концентраторов размещаются вакуумные приемникитрубы с теплоносителем;
• тарелочного типа, когда в фокусе параболического тарелочного зеркала размещается приемник солнечной энергии с рабочей жидкостью.
Станции башенного типа состоят из пяти основных элементов: оптической системы, автоматической системы управления зеркалами и станцией в целом, парогенератора, башни, которая удерживает гелиоприемник и системы преобразования энергии, включающей теплообменники, аккумуляторы энергии и турбогенераторы.

http://s2.uploads.ru/t/x6SUT.png
Принципиальная схема солнечной электростанции башенного типа

Так как в такой электростанции используется прямое солнечное излучение, концентрирующие гелиосистемы должны иметь систему наблюдения за Солнцем, при этом каждый из гелиостатов ориентируется в пространстве индивидуально.
Температура, которую можно получить на вершине башни с помощью зеркальных концентраторов, составляет 300–1500°С. В одном модуле можно получить мощность, не превышающую 200 МВт, что связано со снижением эффективности переноса энергии от наиболее удаленных концентраторов на вершину башни.

Мировая практика эксплуатации станций башенного типа доказала их техническую осуществимость и работоспособность. Основными недостатками таких установок являются их высокая стоимость и значительная площадь, которую они занимают. Так, для размещения башенной электростанции мощностью 100 МВт необходима площадь 200 га.

http://s6.uploads.ru/t/HsteW.jpg
Солнечная термодинамическая башенная электростанция «Solar Two»
«Solar Two»  работала и развивалась с 1981 по 1999 годы в пустыне Мохаве (Калифорния, США). Ее мощность превышала 10 МВт. Солнечную башню этой станции окружали 1926 гелиостатов общей площадью 83000 м 2. Интересно, что солнечный свет грел не воду, а промежуточный теплоноситель – расплавленную смесь нитратов натрия и калия. От нее уже закипала вода, дающая пар для турбин. В 1999 году ученые переоборудовали эту станцию в гигантский детектор черенковского излучения для изучения воздействия космических лучей на атмосферу.
Свет от сотен больших зеркал столь ярок, что заставляет светиться пыль и влагу в воздухе, благодаря чему и видны лучи, окружающие красивую белую башню. На переднем плане видны стоящие рядом с зеркалами фотоэлектрические панели с концентраторами. Зеркала же, направленные на солнечную башню, с этого ракурса не видны.
Запуск современной солнечной электростанции башенного типа состоялся 30 марта 2007 года в районе Санлукар-ла-Майор недалеко от Севильи (Испания). Красивая бетонная башня высотой 115 м и 624 зеркала гелиостатов площадью 120 м 2 каждое обеспечивают паром паротурбинную установку мощностью 11 МВт, достаточной для снабжения электроэнергией 6000 домов, экономя тем самым 18000 тонн углеродных выбросов в год.
Рядом с данной станцией уже идет строительство еще одной подобной станции (PS2), но более мощной. Будет установлено примерно 1255 зеркал. Расчетная мощность электростанции – 20 МВт. Запуск второй станции сократит выбросы СО2 в атмосферу на 54 000 тонн в год и обеспечит электроэнергией около 18 000 домов.

0

2

В солнечных электростанциях параболического типа  используются параболические зеркала (лотки), концентрирующие солнечную энергию на приемных трубках, которые расположены в фокусе конструкции и содержат в себе жидкостный теплоноситель. Эта жидкость нагревается приблизительно до 400°С и прокачивается через ряд теплообменников, при этом вырабатывается перегретый пар, который приводит в действие обычный турбогенератор для выработки электрической энергии.
http://sg.uploads.ru/t/0k6KW.gif

Станции параболического типа применяются все шире благодаря более простой системе слежения за Солнцем и меньшей материалоемкости. Удельная стоимость станций параболического типа близка к удельной стоимости АЭС.

0

3

http://s7.uploads.ru/t/QYGZD.jpg
солнечная электростанция тарелочного типа

http://s7.uploads.ru/t/15GW7.jpg
схема солнечной электростанции тарелочного типа

В установках тарелочного типа  используются параболические тарелочные зеркала (похожие по форме на спутниковую тарелку), которые фиксируют солнечную энергию на приемнике, расположенном в фокусе каждой тарелки.
Жидкость в приемнике нагревается до 1000°С и ее энергия используется для выработки электрической энергии либо в двигателе Стирлинга, либо в установке, работающей по циклу Брайтона. Установки имеют систему слежения за Солнцем. Ввиду эффекта аберрации в связи с отклонением от идеальной формы и других конструктивных факторов максимальный диаметр тарелок не превышает 20 м при мощности до 60–75 кВт. Удельная стоимость солнечной электростанции тарелочного типа может быть меньше, чем электростанций башенного и параболического типов.
Солнечная электростанция компании Solucar в Санлукар-ла-Майор проверяет в деле самые разные технологии. Например, параболические концентраторы с двигателями Стирлинга и длинные параболические (в поперечном сечении) зеркала с трубами для разогрева теплоносителя

http://sf.uploads.ru/t/5i7F6.jpg
Длинные  параболические (в поперечном сечении) зеркала с трубами для разогрева теплоносителя (фото Solucar)

Солнечные электростанции наиболее эффективны в районах с высоким уровнем солнечной радиации и малой облачностью. Их к.п.д. может достигать 20%, а мощность 100 МВт.
Солнечная фотоэнергетика представляет собой прямое преобразование солнечной радиации в электрическую энергию. Принцип действия фотоэлектрического преобразователя основывается на использовании внутреннего фотоэффекта в полупроводниках и эффекта деления фотогенерированных носителей зарядов (электронов и дырок) электронно-дырочным переходом или потенциальным барьером типа металл–диэлектрик–полупроводник. Фотоэффект имеет место, когда фотон (световой луч) падает на элемент из двух материалов с разным типом электрической проводимости (дырочной или электронной). Попав в такой материал, фотон выбивает электрон из его среды, образуя свободный отрицательный заряд и «дырку». В результате равновесие так называемого p – n -перехода нарушается и в цепи возникает электрический ток.

http://s9.uploads.ru/t/bzmf2.jpg
Схема кремниевого фотоэлемента

http://sa.uploads.ru/t/7nyAS.jpg

Фотоэлектрические панели

Недостатками плоских фотоэлементов для получения электрической энергии являются их высокая стоимость (до 5 дол.США/Вт) и значительные площади, необходимые для размещения фотоэлектростанции.

0

4

Что, простите?
яжблондинка

0

5

Эстер Свифт написал(а):

яжблондинка

почему-то с трудом в это верится...

Тем не менее: как было написано есть два способа получить электричество из солнечного излучения:

1. Термодинамический - проще говоря, используется тепло получаемое от солнца, пробовала когда-нибудь сконцентрировать солнечный свет при помощи лупы? Тут почти тоже самое, только вместо лупы - зеркала, отражающие весь свет в одну точку. В этой точке расположена ёмкость, как правило, с водой. от нагрева вода испаряется за счёт повышенного давления температура пара может достигать 420 градусов Цельсия. Этот нагретый пар подаётся в турбину и вращает генератор, производящий электричество.

2. Фотоэлектрический: с момента 8:40

0



Рейтинг форумов | Создать форум бесплатно